CFB锅炉烟气再循环与SNCR联合脱硝技术

日期:2018-06-21 / 人气: / 来源:未知

  2烟气再循环描述2.1烟气再循环的机理烟气再循环是采用较多的控制NOx的有效方法之一,其原理是是在锅炉排烟前抽取一部分低温烟气直接送入炉内,或与一次风或二次风混合后送入炉内,这样不但可降低燃烧温度,而且也降低了氧气浓度,进而降低了NOx的排放浓度。再循环烟气量与不采用烟气再循环时的烟气量之比,称为烟气再循环率。
  烟气再循环法降低放的效果与燃料品种和烟气再循环量有关。经验表明,烟气再循环率为15-20%时,煤粉炉的NOx排放浓度可降低25%左右。NOx的降低率随着烟气再循环率的增加而增加,而且与燃料种类和燃烧温度有关,燃烧温度越高,烟气再循环率对NOx降低率的影响越大。
  烟气再循环率一般控制在10-20%.当采用更高的烟气再循环率时,燃烧会不稳定,未完全燃烧热损失会增加。
  烟气中含氧量过大从三台锅炉的运行数据来看:1炉负荷为50%-70%,烟气含氧量大部分位于7%-9%之间,甚至有时出现超过10%的工况;2炉负荷为50%-65%,含氧量的数据为6.5%-9%之间,部分时段超过10%;4炉负荷在54%-60%之间时,烟气含氧量甚至高达18%左右。
  在一定范围内,含氧量增高,可提高过量空气系数改善燃烧效率,因为燃烧区域氧浓度的提高增加了燃烧效率及燃尽度,但过量空气系数超过1.15(2.5%)后继续增加对燃烧效率影响不大。同时,对于燃料型NOx,燃料氮的转变率随着过量空气系数的升高而升高,从而造成了燃料型NOx较高。
  一、二次风的配比因不同形式的CFB锅炉的设计工况而不同,一般一次风率为50-60%之间,一次风经空预器预热后进入风室,经布风板、风帽进入锅炉密相区,保证燃烧需要。为减少NOx生成,密相区的实际过量空气系数为1%左右,在运行中,使密相区主要处于还原性气氛。二次风的作用是调节床压,保证燃烧完全所需的氧气。三台锅炉中,4炉负荷在54%-60%之间时,一次风风率高达80-90%之间。一次风率较高,使密相区的过量空气系数过高,床温偏高,从而使NOx大量生成。
  分离器分离效率较低从前期与电厂人员的交流中得到CFB锅炉旋风分离器的分离效率低下,返料量下降,返料对于床料的冷却能力降低,从而导致原有的热平衡打破,造成流化床的床温较高,为降低床温,需要加大风量,从而进一步导致过量空气系数增大,能耗上升。
  三台CFB锅炉存在着炉膛中心区缺氧的问题,究其原因除了高密度物料颗粒群对二次风射流的阻挡作用外,也存在贴壁流垂直下泻覆盖水冷壁、每个层面颗粒水平移动不够均匀、各转弯变化区域涡流干扰和垂直上移速度的不均匀影响。这种中心区缺氧会降低燃料燃尽效果和脱硫剂化学反应的效率,直接导致De-NOx炉内过程的优化受到限制,不能有效实现低温燃烧时的高效低氮。
  由于三台锅炉的燃料为煤泥,煤泥的加入点集中在锅炉上部,造成新鲜燃料和分布相对集中、从而会导致床温偏差较大。事实上,整个床面上各个床温测点偏差较大是普遍存在的CFB锅炉共有问题,一般的CFB锅炉床温偏差都在70°C以上,最大的可以达到150°C以上,这也造成了物料燃尽和石灰石脱硫,以及低氮燃烧的困难。
  床温的不均匀性,肯定会造成局部温度峰值,局部超高床温是产生NOx急剧增加的元凶,其生成能力是合理床温下的数倍甚至数量级增加。
  根据现场实际状况表明,二次风量加大或者投运情况下,锅炉出口氧量反而降低,说明密相区床料(床压)分布极其不均匀,为保证燃烧效果就必然增大一次风量,烟气再循环的设计初衷是为了打破密相区上不快速喘流床的状态,使床料具有横向移动,打破现有流场不均匀状态,使一次风中的氧量得以充分利用,在满足硫化的前提下,进一步降低整个锅炉的含氧量。
  降低总的一次风率,进而降低总风量,使进入分离器的床料粒子动能降低,能将更多的床料经分离器分离下来,增大循环物料量,改善炉内床料平衡。
  本项目烟气再循环系统采用3台风机(2用1备)对现有3台锅炉新增烟气再循环管路,烟气引自静电除尘器与引风机之间管道,新增烟气再循环烟气经现有上部二次风喷口喷入。其中1风机同时给1炉供风,3风机同时给2锅炉及4炉供风,2风机作为备用风机,当1或3风机故障时,能够通过布置在风机联络风道上的手动关断门切换由2风机供风,二次风喷口流速约4050m/s.烟气再循环的风量选为烟气量的15%-20%,按照锅炉满负荷运行的时的烟气作为烟气量的基准,根据在3台炉二次风烟气循环管路上安装的二次风流量测量装置,通过电动调节风门实现供风量的控制。
  表1每台炉的烟气循环量供风量调节范围(Nm3/h)供风压力(KPa)温度rc)备注1炉2炉4炉3SNCR脱硝系统描述3.1工艺描述该脱硝系统的工艺流程如所示。SNCR系统主要由氨水卸载及存储模块,氨水供应模块、喷射模块、雾化空气供应及计量分配模块、控制系模块组成。
  ->SNCR工艺流程图SNCR脱硝氨站图作为还原剂的氨水通过氨水槽罐车运输至氨水储罐区后,通过氨水卸载泵将槽车内的氨水输送至氨水储罐,储罐的容积足够储存脱硝系统运行七天内所需要的氨水的量。氨水储罐内的氨蒸气通过管道连接至氨吸收罐,氨蒸气可被吸收罐中的稀释水吸收,以防止氨气泄漏。
  氨水供应模块含供应泵、过滤器、用于远程控制和监测循环系统的压力、温度、流量以及浓度的仪表等。另外还设有一套背压控制阀(自力式压力调节阀),背压控制回路用于调节供应泵为计量装置供应氨水所需的稳定流量和压力。
  喷射区计量模块为一级模块,用于精确计量和独立控制到锅炉每个喷射区的反应剂浓度。该模块连接NOx和氧监视器的控制信号,自动调节反应剂流量,对NOx水平、锅炉负荷、燃料的变化做出响应,打开或关闭喷射区或控制其质量流量。每一个区子模块可相互独立地运行和控制,该特性允许隔离每个子模块进行维修且不会严重影响工艺性能或总体的NOx还原效果。
  氨水喷射系统的设计能适应水泥窑系统的安全运行,并能适应锅炉的负荷变化和启停的要求。氨水溶液在通过喷嘴喷出时被充分雾化后以一定的角度喷入炉膛内。该系统用于氨水流动时的流量和压力控制,通过氨水喷射系统把氨水调节到一定的压强并向每个喷枪分配,同时把压缩空气流量和压力也调节到与其匹配的程度。
  雾化空气供应及计量分配模块本装置的雾化空气由厂用压缩空气供给,可满足喷枪入口空气压力。4~0.6MPa的要求,厂用压缩空气先进入空气缓冲罐再通过空气计量分配模块进入喷枪,以确保系统的稳定可靠运行。压缩空气总管上的在线流量计对来自压缩空气缓冲罐的压缩空气进行流量测量,将流量信号传至DCS,实现对雾化空气总流量的实时监控。总管以及各个支路上的压力表可以监测空气管路是否畅通,确保雾化空气进入喷枪。
  自动控制系统的设计能够根据锅炉内烟气负荷及排放烟气中NOx、氨气的在线监测情况,经过内在程序的计算,调整传输、喷射系统的运行,进而控制氨水、压缩空气的流量及其控制参数,使脱硝系统能够根据负荷变化自动调节工艺参数,以实现脱硝系统的稳定运行,并保证脱硝效率。
  SNCR具有一个最佳的反应温度窗口。温度过低,反应速率很慢,使大量反应剂来不及参与反应,因而降低了脱硝效率,并且增加反应剂逃逸量。反应产物中的NO和NH3的浓度都比较篼,转化率低;温度过高,NH3的氧化反应速度超过还原反应,并有可能生成更多的NO,造成NO转化率降低。根据锅炉温度测点选择810950°C的反应温度范围。
  氨氮摩尔比增加时,锅炉烟气中NOx排放量减少,与此同时,氨的逃逸率增加。CFB锅炉采用SNCR喷氨时,氨氮摩尔比达到1左右,脱硝反应正好可以反应完全,但实际情况一般需要氨氮摩尔比大于1.当摩尔比大于1且小于2时,脱硝效率升高;当摩尔比大于2.0后,脱硝效率增幅变缓,而此时氨的逃逸量却增加了。根据不同的氨氮比调整喷氨量,在实际工况下,氨氮比达1.4时,出口氮氧化物的含量该项目三台锅炉通过采用调整二次风配置和SNCR脱硝技术,净烟气后NOx浓度小于100mg/m3(干基,6%含氧量,以N02计)。还原剂采用氨水,喷氨氨氮物质的量之比(NSR)小于1.4,对锅炉效率等的影响小于0.4%.建议循环流化床锅炉推广采用SNCR和烟气再循环相结合的技术。该技术不需催化剂,运行成本较低,设备安装也比较简单,维护及操作简单,占地面积小,可作为小容量循环流化床锅炉的主要脱硝手段,以达到最大限度降低氮氧化物排放的目的。

作者:北城锅炉


现在致电 400-0312-851 OR 查看更多联系方式 →

Go To Top 回顶部